
-A176 179 ONl A NOVING-FRANE ALGOITHM ND THdE TRJIJLNTIOU Or li
EQUILIBRIUM MANIFOLDSCU) PITTSBURGH UNIV PA INST FOR
COMPUTATIONAL MATHEMATICS AND RPP W C RHEIN8OLDT

UNCLASSIFIED OCT 86 ICMA-86-i88 N69914-89-C-9455 F/G 12/1 IL

I.E



I -fQLIM" ILI
LA 140 ;

LIM

II.. I1Li0

1125116



VIM INSTITUTE FOR COMPUTATIONAL

MATHEMATICS AND APPLICATIONS

Technical Report ICMA-86-100 October 1986

On a Moving-Frame Algorithm

and the Triangulation of Equilibrium Manifolds

S.

Department of Mathematics and Statistics

University of Pittsburgh
8 t~iDT!a

J JAN 2aT19

p-.

-.bua I

.87 1 27 05
">.. . . . ,. , ,.. -. . .. ' - .,e " '. '. '" 7 ,



I'

Technical Report ICMA-86-100 October 1986

On a Moving-Frame Algorithm

and the Triangulation of Equilibrium Manifolds

Iby

Werner C. Rheinboldt
1

Institute of Computational Mathematics and Applica-iaons
,.i: Department of Mathematics and Statistics

University of Pittsburgh D TWr
Pittsburgh, PA 15260 f/ ELEC -1

JAN 2 7 jj

1. This work supported by the National Science Foundation undergrant DCR-8309926, the Office of Naval Research under contract

N-00014-80-C-9455, and the Air Force Office of Scientific
Research under grant 84-0131.

ll , P IA'W A I~r. Ii r: ,:.=.,!.a r *l~ bd



On a Movino-Frame Algorithm ,' ;A 

and the Triangulation of Equilibrium Manifolds r>: IA.

by Ju";t if tcatio i.

Werner C. Rheinboldt I  B.
Distribution/

Availability Codes
1.I. Introduction CV 'Avail and/or

INS"r,.u.~L.Qn Dist Special

Nonlinear, parametrized equations -I

F(z,X) = 0, I.I)

represent models of equilibrium problems for many physical systems. If
F: Rn -o Rm . n=m.p, p 1. is continuously differentiable on Rn. then the
regular solution manifold

M {x Rn ; F(x) = 0, ran DF(x)=m} (1.2)

is a p-dimensional, differentiable manifold in Rn without boundary. We
snail assume always that F is at least of class Cr, r % 2.

The standard procedures for the computational analysis of such
solution manifolds are the continuation methods. When the parameter
dimension p exceeds unity, these methods require a restriction to some
path on the manifold and then produce a sequence of points along that
path. In general, it is not easy to develop a good picture of a multi-
dimensional manifold from information along one-dimensional paths; thus
there is growing interest in computational methods which generate multi-
dimensional grids of solution points. Up to now, the only such method
appears to be that of E.L. Allgower and P.H. Schmidt [1]. It utilizes a
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simplicial continuation algorithm to triangulate a p-dimensional manifold
by means of p-simplices.

In [10] a new algorithm was developed for computing vertices of a
triangulation (by p-simplices) of certain subsets of a p-dimensional
solution manifold (1.2). It depends on an algorithm for constructing a
moving frame on these subsets of M. We present here an overview of
these two algorithms and illustrate their effectiveness with some
numerical examples.

2. Local Coordinate Sustems

At any point x of M the tangent space TxM may be identified with
the kernel of the Jacobian DF(x),

TxM = ker DF(x) u E Rn ; DF(x)u = 0}. (2. i)

and then the corresponding normal space NM is specified as tne

orthogonal complement N M = TxM. = rge DF(X)T.

A given p-dimensional subspace T C Rn induces a local coordinate
system of M at any point x E M where

T 0 NxM = (0) (2.2)

As shown, for instance, in [4] or [91, at any x E M where (2.2) holds there
exist neighborhoods V, C T and V2 E Rn of the origins of T and Rn,

respectively, and a unique Cr-I function w: V, -" T1. w(0) = 0. such that

M ()V 2 =yERn; y =x+ t + w(t), tE VI) (2.3)

A well-known procedure for computing tangent bases is provided by
the OR-decomposition
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DF(x)T =Q R1 Q = (Q1Q2) (2
LoJ

where the n x n matrix Q is orthogonal, Q1 has m columns, and the m m m
matrix R is upper triangular and non-singular for x E M. Then tme p
columns of Q2 form an orthonormal basis of TxM.

If x E M is a point where the OR-decomposition (2.4) has been
computed, then with any starting-point y = yO sufficiently near x in x-TYM
we may apply the chord-Gauss-Newton process:

For k=0. I .... until convergence
I) solve RTZ = F(y) for z E RP (2.5)
2) y := y - Q(z.O)T

The convergence theory of these methods is well understood. In particular.
a theorem of Deuflhard and Heindl (31 can be used to ensure that there
exists for any x E M a neighborhood V = V(x) of x in x+TxM such that for
any y in V(x) the process (2.4) converges to some y* E M. Moreover, we can
show readily that y*-yO E NxM and hence that, in the notation of (2.3), we
have y* = x+t+w(t), t=yO-x. In other words, the process (2.5) represents an
implementation of the 'corrector" mapping w of the local coordinate
representation (2.3).

3. The Moving Frame Algorithm

Recall that a vector field of class Cs , s r, on an open subset Mo of
M is a CS function u :M -# TM into the tangent bundle TM such that u(x?
belongs to TxM for x each Mo . A moving frame of class Cs on Mo

associates with each x of M0 an ordered basis (frame) (ul,.....uP of TxM

Such that each coordinate map ui : M0 -, TM, i=I ,....p defines a vector f eld
of class Cs on Mo. We shall consider only orthonormal moving frames.
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In our setting, an algorithm for constructing a moving frame has to
generate for each x of some open subset Mo of M an n x p matrix U(x)
with orthonormal columns such that DF(xXU(x) = 0 and that the mapping
U Mo -6 RPxn is of class Cs on Mo. As noted in [2]. the OR-decomposition
(2.4) does not produce continuously varying matrices U(x). This
observation extends to other algorithms of a similar nature. The three
remedies proposed in [21 do not concern the generation of a moving frame.

For the moving frame algorithm developed in [10] we assume that
some method is available for computing at the points x of M some n x p
matrix Uo(x) with orthonormal columnis that span TxM. Of course, Uo(x) is
not expected to depend continuously on x. For instance, we may use the
OR-decomposition (2.4).

The algorithm is based on the selection of an n x p reference matrix
Tr with orthonormal columns. Then for a point x of the manifold we
proceed as follows:

(1) Compute the tangent basis matrix Uo(x)
(2) form Uo := Uo(x)Tr ;
(3) compute the singular value decomposition (3.1)

* ArU0B Z and save A and B;
(4) with 0 ABT form the basis matrix U0(x)Q.

The following result, proved in [101, guarantees the validity of this
algorithm:

Theorem: Let M0 be the open subset of M where the subspace of Rn

spanned by the columns of the reference matrix Tr induces a local
coordinate system. Then the mapping x E M * Uo(x)Q E Rnxp given by the
algorithm (3.1 is of class Cri on Mo0 and defines an orthonormal moving
frame on Mo.

If the QR-decomposition is used in step (1) and the dimension of the
manifold is small in comparison with the space dimension, then the



principal cost of (3.1) derives from the approximately (2/3)n 3 flops

needed for the decomposition of DF(x)T.

I In practice, it has turned out to be advantageous to construct the
reference matrix Tr in the following manner. We select a reference point
xr on M. Then the Euclidean norms

Vi = I Uo(xr)T ei 12 .

of the rows of Uo(xr) are the cosines of the principal angles between the
tangent space of M at xr and the i-th natural basis vector e' of Rn.The ri
are independent of the choice of the basis matrix Uo(x). Let ij,...,Jp be
the indices of the p largest of these ri (with ties broken, say,
lexicographically). Then we form the desired reference matrix Tr as the
matrix with the columns e' , i=il,....iD. This construction is analogous to
the local parameter selection in the continuation program PITCON, [11].

i
4. The Triangulation Algorithm

For the triangulation of a p-dimensional manifold we begin by

constructing a reference triangulation on RP. Let Z be the collection of
simplices of this triangulation. Except for considerations of
computational efficiency and simplicity, no restrictions are placed on Z.
We refer, for example, to (12] for various algorithms for triangulating RP.
For our purposes, the well-known Kuhn-triangulations have been useful,
and, in the case p = 2, triangulations of R2 by equilateral triangles have
been applied as well.

Let & denote a given vertex of this triangulation in RP and h > 0 a
fixed steplength. Then for any point x E M where a basis matrix U of T'(M
is known, the mapping

A:RP -x++ T, Al :x + U(Tn-&),1 ERP (4.1)

i
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transfers Z from RP onto x + TxM. As before, let V(x) C x + TxM denote
the local convergence domain of the Gauss-Newton process (2.5). If 11. is
a vertex of Z for which ATn E V(x), then (2.5) can be used to map ATL into
a point y E M. The set m(,,x,U) of vertices of Z that can be mapped onto M
in this way shall be called the "patch" corresponding to ,x,U . (The
steplength h will be held fixed throughout).

An "idealized" form of our algorithm can now be phrased as follows:

(1) Select a reference vertex &* of Z -
(2) Select a reference point x* E M and let M0 be the subset

where, by the theorem, the moving frame algorithm applies
(3) Set x = x", & =" ;
(4) Mark the vrtex & as "used"
(5) While x

(5 as a "center"
(r.) Compute the frame U(x) by algorithm (3. )
(5c) Select all vertices of the patch r(&,x,U(x))

which have not yet been marked "used" ;
(Sd) Map these vertices onto M and mark them "used";
(5e) Choose a "used" vertex & of Z not marked a "center"

and let x be its computed image on M ;

The points computed on M inherit the connectivity pattern of the
original simplices of Z which, in turn, induces a simplicial approximation
MT: of M in Rn.

The algorithm is still "idealized" because, in practice, it is
impossible to check the condition x E Mo and to identify the vertices of Z

that belong to r(&,x,u(x)). Thus, special provisions have to be added in
order to overcome the possible failures due to these missing checks. We
shall not go into details here. The principal approach is to select a
"standardized" patch of Z which is used in step (5c) in place of r( ,x,U(x)).
Then, in step (5d), appropriate alternatives are introduced for all vertices
where a failure of the corrector iteration is encountered.
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AS noted, for two-dimensional manifolds a reference triangulation
of equilateral triangles can be used. Then the 'standardized" patch is the
hatched, star-shaped region in the center of Figure 1. At each vertex, the
second of the two integers is a counter and the first one identifies the
"centero & that is used in mapping that vertex onto M. Thus, after the
reference vertex 0, the nodes 7,..., 12 become centers which serve to map
the nodes 13,...,42 onto M. Then the process continues with nodes
17,18,19,23,24,28,29,33,34,38,39,42 as centers. This is no longer shown
in the figure, but, in practice, we always continued through this further
stage. It results in a total of 114 triangles on M and involves 19 centers
and hence as many Jacobian evaluations. This indicates the efficiency of
the algorithm. In fact, in terms of computed points per Jacobian
evaluation, the method performes better than most continuation processes.

8,25

8,24- & ... 7,18

289,22-7 7,14 - 7,7

k /9,6 09 0, 02 0,7 - 7, 3

9,29 -9,27 - 0, A- 0,1 - 7,16 -- 7,9

1 0110- _5 C -_0,12 __ 12,41

10,33 10,31.10,32 - 0,11 - 11,37__12.40 12,42

10, 34._11, 35___1),36 11, 3,j

11,78
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We present now a few numerical examples to indicate the
performance of the methods. But space limitations force us to be brief.
More extensive examples will be given elsewhere.

Our first example concerns the well-known Belousov-Zhabotinskii
reaction [ 131. As in [6] we write the mass balance equations in the form

(P-xl)x 2+ x1(1-x1 ) - E.x 1 = 0
-(P+xI)x2 + x3 + E20(o'-x 2) = 0 (5.1)

xI - x3(1- ) = 0

If El = 1/1,500, E2 = 1/56,250, and j = 8.4x10- 6 , then, as discussed in
[6], there is an isola point approximately at the point with the coordinates

v
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x, = 0.249, x 2 = 0.750, x3 = 0.125, cx = 3.508, = 0.997. This point waS
used as our reference point on M. and Figure 2 snows tne computeo
simplicial triangulation (based on the reference triangulation of Figure 1).
The printed page is the cKo-plane and x2 is the third coordinate in the
f igure.

Our second example concerns the roll stability of maneuvering
airplanes. Without going into details, we use the equations originally
formulated in [71 and given in [8] and [5] in a simplified form Ax (x) = 0,
x . R8 . Here A is a 5 x 8 matrix and : R8 -+ R5 a quadratic function. The
(dimensionless) control parameters x6 ,x7 ,x8 denote the elevator, aileron,
and rudder deflections, respectively. The bifurcation diagram for rudder
deflections xe = 0 was given in [81 and again (with some extensions) in [5].
In the neighborhood of the origin of the x6.x7-plane it has the form shown
in Figure 3.

XG()

, 0.1

mD- C+

' -0.05

B- A+ Xr= 2

-I.0 - .5 2 0 3 4 0.5 .O0'
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The process was , " ,

point 2 as center T e resC.,Si .- ,- -

page is tne x6,X 7 -Diane 3rrc Tr& .. j- ,%- ,-

triangulation contains ais c'e ',za' .

emanating from trlese tWO ulfjrCa r, ,. -,

.IX ,

/

',,0,

The examples indicate that the algorithms work very efficiently,
even around singularities. Thus, as intended, they do indeed provide a new
tool for deriving information about the shape and features of the manifold.
Of course, besides any graphical representation. the extensive numerical
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output of the process contains a wealth of further information. For
:-. instance, linear interpolation between the computed points defines the

earlier mentioned simplicial approximation ME of M. The corrector process

can be started from any point of ME to produce additional points of M. In

addition, for any given functional it is easy to compute a contour plot of
its values on Mr. For instance, in some structural problems it may be of
interest to determine lines of constant stress components. Similarly, the
foldlines on M represent contour lines with respect to a measure of the
orientation of the projection of the tangent spaces onto the parameter
space. This provides for a simple method of approximating the fold-lines
on M which can then be used to compute the fold points themselves by
means of one of the numerous local iterative processes available for that
purpose. Examples of these, and other post-processing procedures will De
given elsewhere.

,
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